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VARIATIONAL METHOD OF CRACK-CONTOUR LOCATION FOR 

THREE-DIMENSIONAL PROBLEM WITH UNILATERAL CONSTRAINTS 

V. I. Kerchman UDC 539.3.01:539.375 

Extremal properties are established for the solution of the problem of cohesion- 
less normal-rupture crack formation: namely, that the true contour of a Christian- 
ovich crack corresponds to the maximum volume of the cavity. Examples of the ap- 
plication of this principle are considered. 

Mathematical Model of Christianovich Crackin an Elastic Body 

In an elastic space compressed at infinity by a uniform stress o, acting perpendicularly 
to the plane S : z = 0, forces symmetric with respect to S but in the opposite direction are 
applied, leading to the formation of normal rupture over a certain part of this plane of max- 
imum tensile stress (breakdown). If the effect of the cohesive forces of the material over 
the S plane may be neglected in comparison with the applied forces, the resulting check (slit) 
may be described using the Christianovich model [1-4], developed in the context of the mechan- 
ics problems of hot rocks (for an evaluation of the limits of applicability of this cohesion- 
less approximation to applied problems, see [5]). 

In formulating the problem, the scheme of [4] is followed. Suppose that two half spa- 
ces with identical elastic properties (which may vary over the depth) are pressed together 
by a uniformly distributed stress ~ = -o (Fig. i). Identical but opposite loads q(r) tend 
to break the contact between these half spaces (such loads acting on the contour of the de- 
veloping slit also result, as is known, from the above-mentioned volume forces disrupting 
the material [6, 7]). The displacements • w(r, o) of the contours of the plane slit develop- 
ing in the body, of unknown shape G o in plan, and the normal pressure on the half spaces 
composing the body p(r, ~) = -OzIS must satisfy on S conditions in the form of alternating 
equalities and inequalities 

p (r, o )  = q (r) - -  ~, w (r, ~) > 0,. r 6 0~, (1) 

p(r, ~ / 1 / q ( 0 - - ~ ,  w(r, ~ = 0 ,  r6S\G~.  

Here and below, in view of the symmetry, the conditions are written only for the upper 
half space; r = (x, y) is a point of S. There are no tangential stresses nor cohesive forces 
at S. The inequalities in the conditions of Eq. (i) (unilateral constraints) reflect the 
physically clear requirement of "nonoverlapping" of the slit edges and the absence of a re- 
sulting tensile stress on the continuation of the slit -- in the region of overlap of the 
half spaces (see also [8]). In the given formulation, this problem of the breakdo~ of an 
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Fig. i. Christianovich model of cohe- 
sionless crack formation. 

elastic body not subjected to tensile stress over the S plane is a particular case of the 
Sin'orin problem [9] (on the loosening of an elastic half space away from a rigid base in 
ideal contact). The condition in Eq. (1) is "undetermined" (ambiguous) in Sin'orin--Fikera 
terminology. The existence and uniqueness of solutions of the Sin'orin problem has been 
demonstrated in [9]; certain estimates for a homogeneous half space are given in [8]. Note 
that for the given shape of the crack in plan (the slit) G, with the contour r, the displace- 
ments of the crack edges w(r, r) and the applied load Q(r) are related by the pseudodiffer- 
ential equation 

A~w ~, r) = Q (r). (2) 

In particular, for a crack in a homogeneous space of Young's modulus E and Poisson's 
ratio ~, the operator AG takes the form [6] 

E ( 0 Z a__~g2) ~ w(x',y')dx'dy' . 
Aow(x, ~ = in (I - - v  9 ~ q- V~--x')2+(Y--Y'~" (3) 

G 

An ideal representation of the expansion process of the Christianovich crack G o when the 
cQmpressive pressure o decreases from ~ = = (in which case the crack is closed) to o ffi ~o 
will now be considered. Let robe the contours of the corresponding regions of opening of 
the crack, for which Eq. (i) is satisfied. Then the functions 

wi (r; r J  = ow (r, o) Pl (r; F ~  = Op (r; 
O~ ' O~ (4) 

are the values on S of the solution of the mixed problem with the conditions 

Pt (r; Fa) = 1, r E Ga; w, (r; r~) = O, r E S\Ga.  (5) 

Thus, w~(r; F o) is the displacement of points of the contour of crack G o in the given 
body under the action of unit load (the solution of the equation Aoawi(r; r=) = I). Such 
solutions, called "unit solutions," are widely used in linear rupture mechanics, where they 
are usually treated from the viewpoint of the problem of a given crack in a homogeneous 
field of tensile forces [6, 7]. The following representation of the displacement w(r, o) in 
the problem with the conditions in Eq. (I) in terms of the unit solutions for the slits GT 
with T 3o is obtained from Eq. (5) 

w (r, o) = S wi (r; F~) dx. (6)  
O 

E q u a t i o n  (6) i m p l i e s  the  p r o p e r t y  o f  smooth c l o s u r e  o f  the  edges  o f  t he  C h r i s t i a n o v i c h  
c r a c k  on i t s  c o n t o u r  when q ( r ) ~ - Q o :  w ( r ,  o) = O(pn s /2)  i n  the  v i c i n i t y  of  t h e  c o n t o u r  r 0 
of the growing crack, where On is the distance from the point r r G o to r o. 

Extremal Properties of Cohesionless-Slit Contours 

The solution of the given problem has an important extremal property.* Of all the pos- 
sible cracks G for a given load field Q(r) = q(r)-o, the true contour F of the Christiano- 
rich crack has the maximum volume of the resulting cavity 

*This assertion was expressed in the form of the Barenblatt hypothesis in discussing [i0]. 
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V[r l=2~w(r ,  r) ds, r = OG, (7) 

i . e . ,  f i n d i n g  t h e  r e g i o n  o f  s l i t  o p e n i n g  i s  e q u i v a l e n t  t o  t h e  p r o b l e m  o f  f i n d i n g  t h e  maximum 
slit volume as a funct!ona ! o f  the c0ntqur. 

Before passing to a proof of this assertion, a 9onvenient expression will be obtained 
for the volume V[F ~ Q(r)] Qf the cavity forming in the space with the fixed plane crack G 
under the action of a normal load Q(r) applied to the crack edges. Applying the reciprocity 
theorem to the stress--strain state corresponding to a crack of form G in plane for the given 
Q(r) and unit load, it is found that 

V iF; Q (r)] = 2 j" Q (r) w, (r; F) dr, (8)  
5,  

where wt(r; F) is the above-mentioned "unit" solution for the crack G. 

In the case where a nonzero displacement w = • U(r) is specified on the plane S except 
for the crack G (e.g., in the compression of half spaces along the common boundary of which 
there are rigid symmetrical inclusions), the expression for the volume associated with this 
crack may be written in the form 

[rl = 2 ~ q (r) w, (r; r) ds--  2 ~ p~ (r; D U (r) ds, V (9) 
o s \ 6  

where p~(r; F)<0, r~S\G is the negative pressure (tensile stress) over the S plane outside 
the crack in the body with a unit crack of form G in plan. Equation (9) is also obtained by 
applying the reciprocity theorem to the unit solution w~(r; F), px(r; F) and to the solution 
of the following mixed problem of a half space 

gzziz=0 = - -  Q (r), r { G, w = U (0, r 6 S\G. (10) 

E q u a t i o n s  (8) and (9) a r e  a n a l o g o u s  i n  fo rm to  t h e  e x p r e s s i o n s  f o r  t h e  f o r c e  a c t i n g  on 
a n o n p l a n e  s t amp  o f  t h e  g i v e n  f o r m  p r e s s e d  i n t o  t h e  h a l f  s p a c e ;  t h e s e  were  o b t a i n e d  in  [11 ] .  

Proof of Extremal Properties. Let ~o, be the crack contour, for which Eq. (i) is sat- 
isfied, and r' any other contour. Consider an auxiliary crack of form G I = G~ ' in plan, 
the loads applied to the edges of this crack being equal to the pressures on the half space 
in this region correspondingto the solution ofthe problemon the crack GO: Q~(r, G t) = pO (r,~). 

Then the displacements of the edges of this crack coincide (the edges of the crack G I 
under the action of the load p~ o) are superimposed in the subregion G~/G ~ = G'/G~ so 
that the volumes are also equal: V* = V ~ The expression for the volume V* is written in 
the form 

G" G ~ ~ G" 

Equation (9) is now applied to the first term in Eq. (ii), regardin~ it as the volume 
of a crack of form G' in plan, outside which the displacement w~ ~) of the half space 
surface is specified, while the load applied in G' is Q'(r) = p~ ~): 

G" G' Go~G, 
(12) 

The volume V' of the crack of form G' in plan under the action of a load Q(r) = q(r) - 
is calculated from Eq. (8): 

V' = 2 S Iq (r) - -  el wt (r; r,) ds. (13) 
6' 

Combining Eqs. (11),(13), the final result obtained for the difference in volume of 
cracks of different form -- G o and G' -- in plan under the action of the same field of speci- 
fied forces Q(r) = q(r) - a is 
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V ~  S w~ a) [l - -  pt (r; r ' ) l a s  + 2  ~ { ~  (r, a) - -  lq (r) - -  ol} wt (r; r ' ) d s .  (14) 
o'\o" o'\~ 

Taking into account that wt(r; r') I-0 and p,(r~ F') ~i if the operator A G is positive 
(which is the case for a wide class of bodies [12]), and assuming that Eq. (i) is satisfied, 
Eq. (14) yields the necessary condition of the theorem: V~ V'. Since no constraint of in- 
equality type was used in deriving Eq. (14), it also follows from Eq. (14) that the maximal- 
ity condition in Eq. (7) is sufficient. In fact, suppose that a crack G o held open by the 
load Q(r) is such that its volume V ~ is no less than the volume of any other crack V' in the 
same field of specified forces. Then G o is a Chrlstianovich sllt (since otherwise, when any 
of the conditions in Eq. (i) is satisfied, the region G' may be chosen such that V' > V~ 

Note that in the given proof the displacements of the edges of the "trial" crack G were 
not assumed to be nonnegative, and thus the "volume" V' expressed by Eqs. (7) and (13) must 
be understood in a formal algebraic sense. 

Using the principle here proven significantly simplifies the use of Eq. (8), which for 
the problem in Eq. (i) may expediently be rewritten in the form 

V IF, q (r) - -  ol = T IF; q (r)! - -  aVt [r], 

Vt = 2 . [ . ,  (r; r)ds, T = 9 ~ q (r) w, (r; D ds. 
G 6 

(15) 

(16) 

If the extremal contour is sought in a space of crack boundaries which are specified 
by a finite number of parameters Bt, ~2, �9 "'Bn' the variational problem for the functional 
in Eq. (7) reduces to the system of equations 

aT #Vt o --=0, k= I, 2 .... , n, (17) 

from which the geometrical parameters ~,(a),..., U n (o), of the contour r o may also be found. 

The formulation considered above naturally generalizes to the problem of the formation 
of a Chrlstianovlch crack in the symmetry plane S of a body of finite size under the action 
of identical but opposite forces normal to this plane (e.g., in the cross section of a cyl- 
inder). 

The close relation between the approach here developed and the extremal methods of 
finding the unknown contact area when a stamp is pressed into an elastic body should be 
stressed. These problems with unilateral constraints bear a close resemblance. 

In the case when there is an initial crack G, in the symmetry plane of an elastic body, 
a related problem may be considered, the problem of finding the region of superpositlon of 
the crack edges (partial closure of the crack), under the assumption that the material does 
not break down, apart from the initial rupture [8, 13]. This problem coincides with the 
problem of a Chrlstianovich crack whose region of opening may only extend within G,, i.e., 
with constraints on the form of permissible contours. It is dual to the problem of pressing 
in a nonplane stamp bounded by a sharp edge, as considered in [i0]. The desired (semlunknown) 
contour r ~ consists of sections r,, continuously connected with the extremals of the func- 
tional V[F]. 

Note that in the case when the contour F belongs to a family of curves specified by a 
single geometrical parameter, the statlonarit~ of the functional (function) in Eq. (7) with 
respect to this parameter may be established using Just the representation of the solution 
as in Eq. (6) and Eq. (8). In fact, integrating both sides of Eq. (6) over the region Ga, 
and taking into account that GT CG u when T < a, it is found that 

Via;  Fol = [ Vt [rd dx. (18) 
O 

If the contour F o is specified by a single parameter a = a(o) (e.g., the radius of a 
circle for dlsk-shaped cracks), so that o = ~(a) is a function incorporating the inverse 
dependence, Eqs. (15) and (18) yield two expressions for the volume V as a function of the 
variable a: 
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V (a) = - -  ~ Vt (~) a '  (=) d= = T (a; q) - -  ~ (3 V, (a). (19) 

0 

Differentiating Eq, (19) with respect to a leads to an equation from which a(o) may be 
determined, identical with the stationarity condition in Eq. (17) 

T' (~  - -  oV~ (4  = 0. (20) 

The given derivation of Eq. (20) closely resembles the corresponding discussion in 
finding the contact area in [14], while Eq. (6) serves as an analog of the expression for 
the contact stress on pressing in a stamp in terms of the solutions for "unit"stamps obtained 
in [14]. 

Having established these extremal properties, it is possible to isolate the intrinsically 
nonlinear part of the problem -- finding an initially unknown slit contour Po corresponding to 
satisfaction of the unilateral conditions of no tensile stress and no overlapping of the ed- 
ges -- from the linear problem of determining the stress-- strain state of a body with a crack 
of already known form in plan, which may be solved independently. In particular, the dis- 
placement of the edges is obtained using quadratures in Eq. (6). 

No discussion will be given here of the aspects of the problem associated with the ab- 
stract theory of variational inequalities [9] and the extremal properties of elastic energy. 
The expression for the deformation energy of a body with a Christianovich crack G O (calculated 
from the energy of a compressed body without a crack) will simply be noted; it is obtained 
from Eq. (6) 

�9 w ia; r . l  = i V[,;  r d d , .  ( 2 1 )  

o 

Application of Variational Approach 

Unfortunately, accurate solutions of "unit" problems are known only for circular and 
elliptical cracks [6]. Approximate solutions have also been obtained for cracks close to 
circular [6] and annular [15]. Methods of numerical solution of problems for cracks of ar- 
bitrary form in plan have been developed, based on the discretization of the corresponding 
integral or pseudodifferential equations by means of division of the crack region into cells 
and difference approximation of the solution [16, 17]. As will be shown, the problem in 
Eqs. (i) and (2) reduces, under these circumstances, to a finite-dimensional extremal problem. 

Example i. An Elliptical Crack in a Homogeneous Elastic Space Held Open by a Load 
q(x, y) = O~(y) Applied over the Segment Ix]~ l, y = 0. At small values of the dimension- 
less load parameter N = Qo/ol, the contour of a Christianovich crack is a narrow ellipse close 
~othe line of action of the load; for large N, it approaches a circle corresponding to a pair 
of point forces 2Qo/ applied at the points x = y = 0. Therefore, the contours F will be 
looked for in the family of ellipse with constant focal distance 21 and a major semiaxis a.* 
The unit solution for such cracks is of the form 

V 1 12/a 2 / .  y2 
wi  (x,  y) = | /  a ~ -  x 2 

D E  (l/a) r t - -  12/a z ' 

where E(1/a) is the total elliptical integral; D = E/2(I -- v 2) is the elastic constant. Cal- 
culatingEq. (16), the extremum condition in Eq. (17) yields an equation relating the contour 
eccentricity e = 1/a and the load parameter N: 

3N { l'+-eZ ( 3 V l - ~  I ) 
2~x e ~ + e a + e l / ~  arcsin 

K(e) ( l - e 2  V ' l - e 2  ) 
- -  E (e---)- " e 2 + e 3 arcsin e 

_ 4  2 K(e) ( 1 t ) 
e~ e ~ E (e) e ~ e ~ 

e}-- 
(22) 

*More detailed analysis shows that this assumption is satisfied with high accuracy. 
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TABLE i. Dimensionless of Annular Crack as a Function of 
Dimensionless Load M = Po/~o c2 

I I I 1 1 1 I a/c 1,0 0,918 0.832 0.603 0.449 0,3285 0.216 0.125 0 
b/c 1,0  1,082 1,168 1~310 1~383 1.424 1.450 1.462 1,467 

Example 2. An Axisymmetric Crack Held Open by a Load Applied over the Circumference 
of a Circle of Radius c, Where c(q(pJ~'PoS{p--c)/2~p) . The slit which appears is disk-shaped 
only at sufficiently large values of the dimensionless load parameter ~=Po/~Oc~>M.~ At 
small M, the crack is annular. Using the asymptotic solutions obtained in [15] for a crack 
that is annular in plan u ~p ~ b, under the action of unit load, the initially unknown sllt 
dimensions may be determined as a function of M. For example, for small M, the ring is nar- 
row (b/a -- 1 << 1), and the corresponding unit solution may be written in the following asymp- 
totic form 

aa/4bS/4 F"(p--a)(b--p)[l  +(O.246+lng/16)~, :2 + 1 , 7 5 ( p t ~ - - 1 ) ] ,  (23)  
wi (p) = Dp 2 

= 2 a / ( b  - -  a). 

The  v a l u e s  o f  a and  b a r e  d e t e r m i n e d  f r o m  Eq.  ( 1 7 ) ,  w h e r e  p~ = a ,  V# = b .  I n  t h e  a p -  
p r o x i m a t i o n  a d o p t e d ,  a / c  = X --  r  b / c  = X + r  w h e r e  ~ << 1 ,  and  t h e  f o l l o w i n g  e q u a t i o n ,  a c -  
c u r a t e  up to terms of order cs, is satisfied: 

~8 [2 q- 1,58 q- 1,675s ~ - -  (0.25s z q- 0,3125s 3) In 8] 

= M [1 q- a q- 0,67558~q - 2.0328a z -  (0.1875azq - 0,125g~ In el. (24)  

The values of a/c and b/c for M ~ i are given in Table i. For M< M,, but close to this 
critical load parameter, the ring is broad (b/a >>i), The unit solution in this case has the 
simple asymptotic form [15] 

w,(p) = 4 V~'~--p z arccos a 
~"D p 

The extremum condition in Eq. (17) gives a system of equations for determining the crack 
dimensions 

2M - /  M c ~ M - - a  2 
V cz _ a2 ~ = o, 

b 

M 2 v M b  a ~ bp a _,__c 2 arccos ---- c 1 / / ~ _ _ p  2 arccos --p dp = 0 .  

(25) 

Numerical solution of Eq. (25) gave the values of a/c and b/c for M>12 given in Table 
i. The critical value of M is M, = 3.149. 

When M > M,, the crack is disk-shaped, and its radius b is determined from the second 
relation in Eq. (25) with a = 0, which coincides with the result obtained from the condition 
that the stress-intensity factor vanishes on the contour 

2bi Vb~ - -  1 = M ,  b t  = b / c .  (26)  

In the course of proving the extremal properties, it has already been noted that the 
true contour corresponds to the absolute maximum of the crack volume. For this to be the 
case, of course, the chosen system of parameters specifying the trial contours must be 
sufficiently complete. If, for example, the form of the load is not taken into account in 
the given problem, that of finding the solution for any M in the class of disk-shaped cracks, 
overlapping of the crack edges is obtainednear the center when M < M, in circular cracks 
corresponding to the formal solution of Eq. (26), and the volume is smaller than for a true 
annular slit. 
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Exampl e 3. Numerical Solution of the Problem of a Slit with an Unknown Contour. Let 
the region S,, which is known to contain the region of opening of the crack G o , be divided 
into cells (i). Using any numerical method of solving Eq. (2) i~ S,, e.g., the variational- 
difference approach [17], Eq. (2) is reduced to a system of linear equations for the unknown 
displacements in the cells 

/ •  A ~ j w j  = p ~ ,  i = I,  . . . .  N .  
= !  

(27) 

The desired region G O corresponds to the part of S~ in which the load on the half space 
coincides with the external forces holding the crack open 

N 
~ Atjws = Q~, (i)E G o , 
]= l 

while in the subregion S,\\G ~ the edges of the crack S~ are superimposed: 

ms = O, (i) 6 Si "\ G ~ 

The next step is to pass, in accordance with the statement Of the theorem, to the follow- 
ing finite-dimensional problem on the extremum condition: to maximize 

N 

V = ~ si~:i  (28) 
i=l 

(where  s i a r e  t h e  a r e a s  c o r r e s p o n d i n g  t o  t h e  e x p r e s s i o n  f o r  t h e  e l e m e n t a r y  vo lume  i n  t e r m s  o f  
the variables in cell i) under the constraints 

N 

j=l 

Any of the methods of directed search may be used to solve the resulting extremal prob- 
lem graphically (the set consisting of a finite but very large number of points in N-dimen- 
sional space -- the solutions of Eq. (29) corresponding to different subregions G c; S~). How- 
ever, the following iterative method for the approximate solution of Eqs. (28) and (29) is 
more effective. Suppose that pk = (pk, . ., pk) is the load vector on the half spaces com- 
prising the body at the selected grid points andt~wk = (w k, . .., w k) the displacement of the 

crack edges at these points, in the k-th iteration. At the points i where pk < Qi, set 
wh+I _~ ~ ~-A. The varying pressure on the half spaces is calculated in accordance with Eq. 

(27): pk+~ = Awk+,, and then the procedure is repeated. Complete closures of the crack may 
be taken as the initial approximation: w~ = 0, i = I, . ., N. 

Since the displacements and hence the integral function in Eq. (28) do not decrease in 
this process, the iteration converges, after a finite number of steps, to the approximate 
Solution w, of the problem of crack-edge superposition. In a symmetric matrix of coeffi- 
cients, the diagonal elements are positive, while the off-diagonal elements are negative and 
much smaller in absolute magnitude, so that Aii >~IAjil. Therefore, the iterational Pr0rcess 

is stable, and the approximate solution w, satisfies the condition 

0 < p~-- Qi< s when w~ >0, 

where the discrepancy in the stress e < (max Aii)A , andmay be made sufficiently small by 
reducing the displacement step 4. 

Note, in conclusion, that the approach here proposed may be directly examined to thermo- 
elastic problems and problems on cracks in elasti c -- porous media saturated with liquid, in 
the presence of filtrational forces, when the additional loads due to heat and mass transfer 
are independent of the strain. 
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NOTATION 

S, rupture plane; 0, compression-force intensity; Y, cut (crack) contour; p(r), normal 
load on S; AG, pseudodifferential operator on G; v[r], cavity volume corresponding to the 
crack G; ~,, . �9 ", ~n, geometrical parameters of contour F; E, Young's modulus; ~, Poisson's 
ratio; 6(y), Dirac delta function; Aij , matrix coefficients for discretization (i, 2); p ffi 
(p,, . .., pN), �9 vector of loads at grid points; w ~ (w,, .... , WN) , vector of displace- 
ments at grid points; p, polar radius. 
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